ChatFireworks
Fireworks AI is an AI inference platform to run and customize models. For a list of all models served by Fireworks see the Fireworks docs.
This guide will help you getting started with ChatFireworks
chat
models. For detailed documentation of all
ChatFireworks
features and configurations head to the API
reference.
Overview
Integration details
Class | Package | Local | Serializable | PY support | Package downloads | Package latest |
---|---|---|---|---|---|---|
ChatFireworks | @langchain/community | ❌ | ✅ | ✅ |
Model features
See the links in the table headers below for guides on how to use specific features.
Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Token usage | Logprobs |
---|---|---|---|---|---|---|---|---|
✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ |
Setup
To access ChatFireworks
models you’ll need to create a Fireworks
account, get an API key, and install the @langchain/community
integration package.
Credentials
Head to the Fireworks website to sign up
to Fireworks and generate an API key. Once you’ve done this set the
FIREWORKS_API_KEY
environment variable:
export FIREWORKS_API_KEY="your-api-key"
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# export LANGCHAIN_TRACING_V2="true"
# export LANGCHAIN_API_KEY="your-api-key"
Installation
The LangChain ChatFireworks
integration lives in the
@langchain/community
package:
- npm
- yarn
- pnpm
npm i @langchain/community
yarn add @langchain/community
pnpm add @langchain/community
Instantiation
Now we can instantiate our model object and generate chat completions:
import { ChatFireworks } from "@langchain/community/chat_models/fireworks";
const llm = new ChatFireworks({
model: "accounts/fireworks/models/llama-v3p1-70b-instruct",
temperature: 0,
maxTokens: undefined,
timeout: undefined,
maxRetries: 2,
// other params...
});
Invocation
const aiMsg = await llm.invoke([
[
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
],
["human", "I love programming."],
]);
aiMsg;
AIMessage {
"id": "chatcmpl-9rBYHbb6QYRrKyr2tMhO9pH4AYXR4",
"content": "J'adore la programmation.",
"additional_kwargs": {},
"response_metadata": {
"tokenUsage": {
"completionTokens": 8,
"promptTokens": 31,
"totalTokens": 39
},
"finish_reason": "stop"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 31,
"output_tokens": 8,
"total_tokens": 39
}
}
console.log(aiMsg.content);
J'adore la programmation.
Chaining
We can chain our model with a prompt template like so:
import { ChatPromptTemplate } from "@langchain/core/prompts";
const prompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
],
["human", "{input}"],
]);
const chain = prompt.pipe(llm);
await chain.invoke({
input_language: "English",
output_language: "German",
input: "I love programming.",
});
AIMessage {
"id": "chatcmpl-9rBYM3KSIhHOuTXpBvA5oFyk8RSaN",
"content": "Ich liebe das Programmieren.",
"additional_kwargs": {},
"response_metadata": {
"tokenUsage": {
"completionTokens": 6,
"promptTokens": 26,
"totalTokens": 32
},
"finish_reason": "stop"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 26,
"output_tokens": 6,
"total_tokens": 32
}
}
Behind the scenes, Fireworks AI uses the OpenAI SDK and OpenAI compatible API, with some caveats:
- Certain properties are not supported by the Fireworks API, see here.
- Generation using multiple prompts is not supported.
API reference
For detailed documentation of all ChatFireworks features and configurations head to the API reference: https://api.js.langchain.com/classes/langchain_community_chat_models_fireworks.ChatFireworks.html
Related
- Chat model conceptual guide
- Chat model how-to guides