ChatMistralAI
Mistral AI is a platform that offers hosting for their powerful open source models.
This will help you getting started with ChatMistralAI chat models. For detailed documentation of all ChatMistralAI features and configurations head to the API reference.
Overviewβ
Integration detailsβ
Class | Package | Local | Serializable | PY support | Package downloads | Package latest |
---|---|---|---|---|---|---|
ChatMistralAI | @langchain/mistralai | β | β | β |
Model featuresβ
See the links in the table headers below for guides on how to use specific features.
Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Token usage | Logprobs |
---|---|---|---|---|---|---|---|---|
β | β | β | β | β | β | β | β | β |
Setupβ
To access ChatMistralAI
models youβll need to create a ChatMistralAI
account, get an API key, and install the @langchain/mistralai
integration package.
Credentialsβ
Head here to sign up to Mistral AI and
generate an API key. Once youβve done this set the MISTRAL_API_KEY
environment variable:
export MISTRAL_API_KEY="your-api-key"
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# export LANGCHAIN_TRACING_V2="true"
# export LANGCHAIN_API_KEY="your-api-key"
Installationβ
The LangChain ChatMistralAI integration lives in the
@langchain/mistralai
package:
- npm
- yarn
- pnpm
npm i @langchain/mistralai
yarn add @langchain/mistralai
pnpm add @langchain/mistralai
Instantiationβ
Now we can instantiate our model object and generate chat completions:
import { ChatMistralAI } from "@langchain/mistralai";
const llm = new ChatMistralAI({
model: "mistral-large-latest",
temperature: 0,
maxRetries: 2,
// other params...
});
Invocationβ
When sending chat messages to mistral, there are a few requirements to follow:
- The first message can not be an assistant (ai) message.
- Messages must alternate between user and assistant (ai) messages.
- Messages can not end with an assistant (ai) or system message.
const aiMsg = await llm.invoke([
[
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
],
["human", "I love programming."],
]);
aiMsg;
AIMessage {
"content": "J'adore la programmation.",
"additional_kwargs": {},
"response_metadata": {
"tokenUsage": {
"completionTokens": 9,
"promptTokens": 27,
"totalTokens": 36
},
"finish_reason": "stop"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 27,
"output_tokens": 9,
"total_tokens": 36
}
}
console.log(aiMsg.content);
J'adore la programmation.
Chainingβ
We can chain our model with a prompt template like so:
import { ChatPromptTemplate } from "@langchain/core/prompts";
const prompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
],
["human", "{input}"],
]);
const chain = prompt.pipe(llm);
await chain.invoke({
input_language: "English",
output_language: "German",
input: "I love programming.",
});
AIMessage {
"content": "Ich liebe Programmieren.",
"additional_kwargs": {},
"response_metadata": {
"tokenUsage": {
"completionTokens": 7,
"promptTokens": 21,
"totalTokens": 28
},
"finish_reason": "stop"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 21,
"output_tokens": 7,
"total_tokens": 28
}
}
Tool callingβ
Mistralβs API supports tool calling for a subset of their models. You can see which models support tool calling on this page.
The examples below demonstrates how to use it:
import { ChatMistralAI } from "@langchain/mistralai";
import { ChatPromptTemplate } from "@langchain/core/prompts";
import { z } from "zod";
import { tool } from "@langchain/core/tools";
const calculatorSchema = z.object({
operation: z
.enum(["add", "subtract", "multiply", "divide"])
.describe("The type of operation to execute."),
number1: z.number().describe("The first number to operate on."),
number2: z.number().describe("The second number to operate on."),
});
const calculatorTool = tool(
(input) => {
return JSON.stringify(input);
},
{
name: "calculator",
description: "A simple calculator tool",
schema: calculatorSchema,
}
);
// Bind the tool to the model
const modelWithTool = new ChatMistralAI({
model: "mistral-large-latest",
}).bindTools([calculatorTool]);
const calcToolPrompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant who always needs to use a calculator.",
],
["human", "{input}"],
]);
// Chain your prompt, model, and output parser together
const chainWithCalcTool = calcToolPrompt.pipe(modelWithTool);
const calcToolRes = await chainWithCalcTool.invoke({
input: "What is 2 + 2?",
});
console.log(calcToolRes.tool_calls);
[
{
name: 'calculator',
args: { operation: 'add', number1: 2, number2: 2 },
type: 'tool_call',
id: 'DD9diCL1W'
}
]
API referenceβ
For detailed documentation of all ChatMistralAI features and configurations head to the API reference: https://api.js.langchain.com/classes/langchain_mistralai.ChatMistralAI.html
Relatedβ
- Chat model conceptual guide
- Chat model how-to guides